☆ 計算速度の限界 ☆

井出 薫

 コンピュータの処理速度は、急速に伸びている。将棋のプロ棋士にコンピュータが勝てるようになったのは、アルゴリズムの進化によるところが大きいが、処理速度の向上も無視できない。最強との呼び声高い将棋ソフト「GPS将棋」などは多数のコンピュータをネットワークで結び並列処理して短時間で最善手を導き出す。

 コンピュータの処理能力に限界はないのだろうか。そういう訳にはいかない。まず物理学の原理に示される限界がある。それは相対論、量子論、熱統計力学の原理だ。

 相対論により、真空中の光の速さよりも速い者は存在しない。一時期、ニュートリノが(真空中の)光速を超えたと報じられ騒然となったが、測定誤りであることが判明した。数理学的にはタキオンと呼ばれる超光速粒子が存在しうるが、量子論や因果律と矛盾するため実在しないと考えられている。そうなると、どんなに短い距離でも(有意な)情報伝達には(有限の)時間を要することになる。光の速さと言えば、1秒で地球を8周半と言われる通りべら棒な速度(約30万キロ/秒)だが、それでも無限ではない。たとえば太陽からの光は、実は8分ほど前に放出されたものなのだ。どんなに高密度化しても回路素子の間には有限の距離があり、素子間の信号伝達には有限の時間が必要となる。原子間レベル(ナノメートルのレベル)まで素子を高密度化しても、処理遅延の時間はゼロにはならない。これが処理速度の限界を形作る。

 さらに回路素子間の距離を縮めることにも限界がある。量子論から導かれる不確定性原理に基づき、その距離はゼロにはできない。たとえ素粒子が点で距離を持たないとしても、不確定性原理から、素子を正確に一つの場所に固定することはできない。どうしても素子間には一定の距離が必要となる。このことが相対論からくる限界に、さらにより強い限界を課す。

 また、現実的には、私たちは絶対零度の世界ではなく、有限温度の世界に暮らしているから熱雑音をゼロにはできない。熱統計力学的な限界として、この熱雑音により、さらに処理速度の制限が厳しくなる。熱雑音は計算の誤りの原因となり、これを除去するには工夫が必要となる。そのため、素子間の距離はさらに長くする必要が生じ、また誤り検出・訂正機能が必要となるために処理が遅くなる。スーパーコンピュータと呼ばれる超高速処理のコンピュータでは、絶対零度に近づけるために様々な冷却手段が使用されているが、それでも熱雑音を完全に除去することはできない。

 このように物理学の原理だけを考えても、コンピュータの処理速度には限界がある。さらに技術的な限界、コスト的な限界を考慮すると、さらに処理速度の上限は低くなる。現代のコンピュータは目覚ましい技術発展を遂げたとは言え、まだこの上限にはほど遠い状況にあるが、それでも単純に処理速度を上げるという方策では早晩壁に突き当たる。

 そこで、計算をより速くするためには、計算の方法を工夫する必要が生じる。並列計算は昔からの高速化の手法で、実際、広く用いられている。100個の数字の乗算をするとき、1つずつ掛け算をするよりも、10個の塊10個に分けて並行して掛け算をして、最後に結果を掛け算した方が10倍速くなる。これが並列計算だ。古典コンピュータでは、並列計算のためにはCPUを多数用意する必要があるが、量子コンピュータが実用化すればCPUの数はそれほど多くする必要はない。(ただし問題によっては量子コンピュータでも効率化できないことはある。)

 他にも高速化のための技法が多数ある。だがいずれにしろ、どのような方法を用いても、計算の速さには限界がある。どんなに技術が進歩しても、瞬時に答えを見い出すことはできない。従ってより実用的には、計算の高速化と並行して、計算方法(アルゴリズム)の工夫が大切になる。最初に取り上げたコンピュータ将棋でも、計算の高速化よりも、寧ろ、局面の優劣を判断するアルゴリズムの進歩が強くなった秘訣と言える。ただ闇雲に計算しているだけでは如何に高速化しても、将棋の指し手のように指数関数的に増える計算量には対応できない。人間並みのコンピュータを実現するという時に必要なことも、計算の速度よりも方法だ。何しろ、速度だけならば、人間の脳神経細胞の処理速度よりも、コンピュータの方がすでに数万倍速いのだから。


(H25/5/24記)


[ Back ]



Copyright(c) 2003 IDEA-MOO All Rights Reserved.